Files
gousb/fakelibusb_test.go
Sebastian Zagrodzki 18f4c1d8a7 Don't skip empty transfers. In isochronous transfers, make sure (#72)
Don't skip empty transfers.
Update the fake libusb to honor the endpoint max packet sizes.
Update tests that were taking advantage of the fact that libusb
allowed unlimited amount of data in any transfer packet.
2019-08-12 21:38:32 +02:00

308 lines
9.1 KiB
Go

// Copyright 2017 the gousb Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gousb
import (
"errors"
"fmt"
"sync"
"time"
)
type fakeTransfer struct {
// done is the channel that needs to receive a signal when the transfer has
// finished.
// This is different from finished below - done is provided by the caller
// and is used to signal the caller.
done chan struct{}
// mu protects transfer data and status.
mu sync.Mutex
// buf is the slice for reading/writing data between the submit() and wait() returning.
buf []byte
// finished is true after the transfer is no longer in flight
finished bool
// status will be returned by wait() on this transfer
status TransferStatus
// length is the number of bytes used from the buffer (write) or available
// in the buffer (read).
length int
// ep is the endpoint that this transfer was created for.
ep *EndpointDesc
// isoPackets is the number of isochronous transfers performed in a single libusb transfer
isoPackets int
// maxLength is the maximum number of bytes this transfer could contain
maxLength int
}
func (t *fakeTransfer) setData(d []byte) {
t.mu.Lock()
defer t.mu.Unlock()
if t.finished {
return
}
copy(t.buf, d)
t.length = len(d)
}
func (t *fakeTransfer) setLength(n int) {
t.mu.Lock()
defer t.mu.Unlock()
if t.finished {
return
}
t.length = n
}
func (t *fakeTransfer) setStatus(st TransferStatus) {
t.mu.Lock()
defer t.mu.Unlock()
if t.finished {
return
}
t.status = st
t.finished = true
t.done <- struct{}{}
}
// fakeLibusb implements a fake libusb stack that pretends to have a number of
// devices connected to it (see fakeDevices variable for a list of devices).
// fakeLibusb is expected to implement all the functions related to device
// enumeration, configuration etc. according to fakeDevices descriptors.
// The fake devices endpoints don't have any particular behavior implemented,
// instead fakeLibusb provides additional functions, like waitForSubmitted,
// that allows the test to explicitly control individual transfer behavior.
type fakeLibusb struct {
mu sync.Mutex
// fakeDevices has a map of devices and their descriptors.
fakeDevices map[*libusbDevice]*fakeDevice
// ts has a map of all allocated transfers, indexed by the pointer of
// underlying libusbTransfer.
ts map[*libusbTransfer]*fakeTransfer
// submitted receives a fakeTransfers when submit() is called.
submitted chan *fakeTransfer
// handles is a map of device handles pointing at opened devices.
handles map[*libusbDevHandle]*libusbDevice
// claims is a map of devices to a set of claimed interfaces
claims map[*libusbDevice]map[uint8]bool
}
func (f *fakeLibusb) init() (*libusbContext, error) { return new(libusbContext), nil }
func (f *fakeLibusb) handleEvents(c *libusbContext, done <-chan struct{}) { <-done }
func (f *fakeLibusb) getDevices(*libusbContext) ([]*libusbDevice, error) {
ret := make([]*libusbDevice, 0, len(fakeDevices))
for d := range f.fakeDevices {
ret = append(ret, d)
}
return ret, nil
}
func (f *fakeLibusb) exit(*libusbContext) error {
close(f.submitted)
if got := len(f.ts); got > 0 {
for t := range f.ts {
f.free(t)
}
return fmt.Errorf("fakeLibusb has %d remaining transfers that should have been freed", got)
}
return nil
}
func (f *fakeLibusb) setDebug(*libusbContext, int) {}
func (f *fakeLibusb) dereference(d *libusbDevice) {}
func (f *fakeLibusb) getDeviceDesc(d *libusbDevice) (*DeviceDesc, error) {
if dev, ok := f.fakeDevices[d]; ok {
return dev.devDesc, nil
}
return nil, fmt.Errorf("invalid USB device %p", d)
}
func (f *fakeLibusb) open(d *libusbDevice) (*libusbDevHandle, error) {
h := new(libusbDevHandle)
f.mu.Lock()
defer f.mu.Unlock()
f.handles[h] = d
return h, nil
}
func (f *fakeLibusb) close(h *libusbDevHandle) {
f.mu.Lock()
defer f.mu.Unlock()
delete(f.handles, h)
}
func (f *fakeLibusb) reset(*libusbDevHandle) error { return nil }
func (f *fakeLibusb) control(*libusbDevHandle, time.Duration, uint8, uint8, uint16, uint16, []byte) (int, error) {
return 0, errors.New("not implemented")
}
func (f *fakeLibusb) getConfig(*libusbDevHandle) (uint8, error) { return 1, nil }
func (f *fakeLibusb) setConfig(d *libusbDevHandle, cfg uint8) error {
debug.Printf("setConfig(%p, %d)\n", d, cfg)
f.mu.Lock()
defer f.mu.Unlock()
if len(f.claims[f.handles[d]]) != 0 {
return fmt.Errorf("can't set device config while interfaces are claimed: %v", f.claims[f.handles[d]])
}
if cfg != 1 {
return fmt.Errorf("device doesn't have config number %d", cfg)
}
return nil
}
func (f *fakeLibusb) getStringDesc(d *libusbDevHandle, index int) (string, error) {
dev, ok := f.fakeDevices[f.handles[d]]
if !ok {
return "", fmt.Errorf("invalid USB device %p", d)
}
str, ok := dev.strDesc[index]
if !ok {
return "", fmt.Errorf("invalid string descriptor index %d", index)
}
return str, nil
}
func (f *fakeLibusb) setAutoDetach(*libusbDevHandle, int) error { return nil }
func (f *fakeLibusb) detachKernelDriver(*libusbDevHandle, uint8) error { return nil }
func (f *fakeLibusb) claim(d *libusbDevHandle, intf uint8) error {
debug.Printf("claim(%p, %d)\n", d, intf)
f.mu.Lock()
defer f.mu.Unlock()
c := f.claims[f.handles[d]]
if c == nil {
c = make(map[uint8]bool)
f.claims[f.handles[d]] = c
}
c[intf] = true
return nil
}
func (f *fakeLibusb) release(d *libusbDevHandle, intf uint8) {
debug.Printf("release(%p, %d)\n", d, intf)
f.mu.Lock()
defer f.mu.Unlock()
c := f.claims[f.handles[d]]
if c == nil {
return
}
c[intf] = false
}
func (f *fakeLibusb) setAlt(d *libusbDevHandle, intf, alt uint8) error {
debug.Printf("setAlt(%p, %d, %d)\n", d, intf, alt)
f.mu.Lock()
defer f.mu.Unlock()
if !f.claims[f.handles[d]][intf] {
return fmt.Errorf("interface %d must be claimed before alt setup can be set", intf)
}
f.fakeDevices[f.handles[d]].alt = alt
return nil
}
func (f *fakeLibusb) alloc(_ *libusbDevHandle, ep *EndpointDesc, isoPackets int, bufLen int, done chan struct{}) (*libusbTransfer, error) {
f.mu.Lock()
defer f.mu.Unlock()
maxLen := ep.MaxPacketSize
if isoPackets > 0 {
if ep.TransferType != TransferTypeIsochronous {
return nil, fmt.Errorf("alloc(..., ep: %s, isoPackets: %d, ...): endpoint is not an isochronous type endpoint, iso packets must be 0", ep, isoPackets)
}
maxLen = isoPackets * ep.MaxPacketSize
}
if bufLen > maxLen {
bufLen = maxLen
}
t := newFakeTransferPointer()
f.ts[t] = &fakeTransfer{
buf: make([]byte, bufLen),
ep: ep,
isoPackets: isoPackets,
maxLength: maxLen,
done: done,
}
return t, nil
}
func (f *fakeLibusb) cancel(t *libusbTransfer) error {
f.mu.Lock()
ft := f.ts[t]
f.mu.Unlock()
ft.setStatus(TransferCancelled)
return nil
}
func (f *fakeLibusb) submit(t *libusbTransfer) error {
f.mu.Lock()
ft := f.ts[t]
f.mu.Unlock()
ft.finished = false
f.submitted <- ft
return nil
}
func (f *fakeLibusb) buffer(t *libusbTransfer) []byte { return f.ts[t].buf }
func (f *fakeLibusb) data(t *libusbTransfer) (int, TransferStatus) {
f.mu.Lock()
defer f.mu.Unlock()
ret := f.ts[t].length
if maxRet := f.ts[t].maxLength; ret > maxRet {
ret = maxRet
}
return ret, f.ts[t].status
}
func (f *fakeLibusb) free(t *libusbTransfer) {
f.mu.Lock()
defer f.mu.Unlock()
delete(f.ts, t)
}
func (f *fakeLibusb) setIsoPacketLengths(t *libusbTransfer, length uint32) {
f.mu.Lock()
defer f.mu.Unlock()
maxLen := f.ts[t].isoPackets * int(length)
if bufLen := len(f.ts[t].buf); maxLen > bufLen {
maxLen = bufLen
}
f.ts[t].maxLength = maxLen
}
// waitForSubmitted can be used by tests to define custom behavior of the transfers submitted on the USB bus.
func (f *fakeLibusb) waitForSubmitted(done <-chan struct{}) *fakeTransfer {
select {
case t, ok := <-f.submitted:
if !ok {
return nil
}
return t
case <-done:
return nil
}
}
// empty can be used to confirm that all transfers were cleaned up.
func (f *fakeLibusb) empty() bool {
return len(f.submitted) == 0
}
func newFakeLibusb() *fakeLibusb {
fl := &fakeLibusb{
fakeDevices: make(map[*libusbDevice]*fakeDevice),
ts: make(map[*libusbTransfer]*fakeTransfer),
submitted: make(chan *fakeTransfer, 10),
handles: make(map[*libusbDevHandle]*libusbDevice),
claims: make(map[*libusbDevice]map[uint8]bool),
}
for _, d := range fakeDevices {
// libusb does not export a way to allocate a new libusb_device struct
// without using the full USB stack. Since the fake library uses the
// libusbDevice only as an identifier, use an arbitrary unique pointer.
// The contents of these pointers is never accessed.
fd := new(fakeDevice)
*fd = d
fl.fakeDevices[newDevicePointer()] = fd
}
return fl
}