Files
gousb/transfer_stream.go
Sebastian Zagrodzki bdb184b25c Make golint fail on errors. (#105)
* make lint fail on errors
* fix lint errors
2021-11-02 12:52:11 +01:00

316 lines
9.6 KiB
Go

// Copyright 2017 the gousb Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gousb
import (
"context"
"io"
)
type transferIntf interface {
submit() error
cancel() error
wait(context.Context) (int, error)
free() error
data() []byte
}
type stream struct {
// a fifo of USB transfers.
transfers chan transferIntf
// err is the first encountered error, returned to the user.
err error
// finished is true if transfers has been already closed.
finished bool
}
func (s *stream) gotError(err error) {
if s.err == nil {
s.err = err
}
}
func (s *stream) noMore() {
if !s.finished {
close(s.transfers)
s.finished = true
}
}
func (s *stream) submitAll() {
count := len(s.transfers)
var all []transferIntf
for i := 0; i < count; i++ {
all = append(all, <-s.transfers)
}
for _, t := range all {
if err := t.submit(); err != nil {
t.free()
s.gotError(err)
s.noMore()
return
}
s.transfers <- t
}
return
}
func (s *stream) flushRemaining() {
s.noMore()
for t := range s.transfers {
t.cancel()
t.wait(context.Background())
t.free()
}
}
func (s *stream) done() {
if s.err == nil {
close(s.transfers)
}
}
// ReadStream is a buffer that tries to prefetch data from the IN endpoint,
// reducing the latency between subsequent Read()s.
// ReadStream keeps prefetching data until Close() is called or until
// an error is encountered. After Close(), the buffer might still have
// data left from transfers that were initiated before Close. Read()ing
// from the ReadStream will keep returning available data. When no more
// data is left, io.EOF is returned.
type ReadStream struct {
s *stream
// current holds the last transfer to return.
current transferIntf
// total/used are the number of all/used bytes in the current transfer.
total, used int
}
// Read reads data from the transfer stream.
// The data will come from at most a single transfer, so the returned number
// might be smaller than the length of p.
// After a non-nil error is returned, all subsequent attempts to read will
// return io.ErrClosedPipe.
// Read cannot be called concurrently with other Read, ReadContext
// or Close.
func (r *ReadStream) Read(p []byte) (int, error) {
return r.ReadContext(context.Background(), p)
}
// ReadContext reads data from the transfer stream.
// The data will come from at most a single transfer, so the returned number
// might be smaller than the length of p.
// After a non-nil error is returned, all subsequent attempts to read will
// return io.ErrClosedPipe.
// ReadContext cannot be called concurrently with other Read, ReadContext
// or Close.
// The context passed controls the cancellation of this particular read
// operation within the stream. The semantics is identical to
// Endpoint.ReadContext.
func (r *ReadStream) ReadContext(ctx context.Context, p []byte) (int, error) {
if r.s.transfers == nil {
return 0, io.ErrClosedPipe
}
if r.current == nil {
t, ok := <-r.s.transfers
if !ok {
// no more transfers in flight
r.s.transfers = nil
return 0, r.s.err
}
n, err := t.wait(ctx)
if err != nil {
// wait error aborts immediately, all remaining data is invalid.
t.free()
r.s.flushRemaining()
r.s.transfers = nil
return n, err
}
r.current = t
r.total = n
r.used = 0
}
use := r.total - r.used
if use > len(p) {
use = len(p)
}
copy(p, r.current.data()[r.used:r.used+use])
r.used += use
if r.used == r.total {
if r.s.err == nil {
if err := r.current.submit(); err == nil {
// guaranteed to not block, len(transfers) == number of allocated transfers
r.s.transfers <- r.current
} else {
r.s.gotError(err)
r.s.noMore()
}
}
if r.s.err != nil {
r.current.free()
}
r.current = nil
}
return use, nil
}
// Close signals that the transfer should stop. After Close is called,
// subsequent Read()s will return data from all transfers that were already
// in progress before returning an io.EOF error, unless another error
// was encountered earlier.
// Close cannot be called concurrently with Read.
func (r *ReadStream) Close() error {
if r.s.transfers == nil {
return nil
}
r.s.gotError(io.EOF)
r.s.noMore()
return nil
}
// WriteStream is a buffer that will send data asynchronously, reducing
// the latency between subsequent Write()s.
type WriteStream struct {
s *stream
total int
}
// Write sends the data to the endpoint. Write returning a nil error doesn't
// mean that data was written to the device, only that it was written to the
// buffer. Only a call to Close() that returns nil error guarantees that
// all transfers have succeeded.
// If the slice passed to Write does not align exactly with the transfer
// buffer size (as declared in a call to NewStream), the last USB transfer
// of this Write will be sent with less data than the full buffer.
// After a non-nil error is returned, all subsequent attempts to write will
// return io.ErrClosedPipe.
// If Write encounters an error when preparing the transfer, the stream
// will still try to complete any pending transfers. The total number
// of bytes successfully written can be retrieved through a Written()
// call after Close() has returned.
// Write cannot be called concurrently with another Write, Written or Close.
func (w *WriteStream) Write(p []byte) (int, error) {
return w.WriteContext(context.Background(), p)
}
// WriteContext sends the data to the endpoint. Write returning a nil error doesn't
// mean that data was written to the device, only that it was written to the
// buffer. Only a call to Close() that returns nil error guarantees that
// all transfers have succeeded.
// If the slice passed to WriteContext does not align exactly with the transfer
// buffer size (as declared in a call to NewStream), the last USB transfer
// of this Write will be sent with less data than the full buffer.
// After a non-nil error is returned, all subsequent attempts to write will
// return io.ErrClosedPipe.
// If WriteContext encounters an error when preparing the transfer, the stream
// will still try to complete any pending transfers. The total number
// of bytes successfully written can be retrieved through a Written()
// call after Close() has returned.
// WriteContext cannot be called concurrently with another Write, WriteContext,
// Written, Close or CloseContext.
func (w *WriteStream) WriteContext(ctx context.Context, p []byte) (int, error) {
if w.s.transfers == nil || w.s.err != nil {
return 0, io.ErrClosedPipe
}
written := 0
all := len(p)
for written < all {
t := <-w.s.transfers
n, err := t.wait(ctx) // unsubmitted transfers will return 0 bytes and no error
w.total += n
if err != nil {
t.free()
w.s.gotError(err)
// This branch is used only after all the transfers were set in flight.
// That means all transfers left in the queue are in flight.
// They must be ignored, since this wait() failed.
w.s.flushRemaining()
return written, err
}
use := all - written
if max := len(t.data()); use > max {
use = max
}
copy(t.data(), p[written:written+use])
if err := t.submit(); err != nil {
t.free()
w.s.gotError(err)
// Even though this submit failed, all the transfers in flight are still valid.
// Don't flush remaining transfers.
// We won't submit any more transfers.
w.s.noMore()
return written, err
}
written += use
w.s.transfers <- t // guaranteed non blocking
}
return written, nil
}
// Close signals end of data to write. Close blocks until all transfers
// that were sent are finished. The error returned by Close is the first
// error encountered during writing the entire stream (if any).
// Close returning nil indicates all transfers completed successfully.
// After Close, the total number of bytes successfully written can be
// retrieved using Written().
// Close may not be called concurrently with Write, Close or Written.
func (w *WriteStream) Close() error {
return w.CloseContext(context.Background())
}
// CloseContext signals end of data to write. CloseContext blocks until all
// transfers that were sent are finished or until the context is canceled. The
// error returned by CloseContext is the first error encountered during writing
// the entire stream (if any).
// CloseContext returning nil indicates all transfers completed successfully.
// After CloseContext, the total number of bytes successfully written can be
// retrieved using Written().
// CloseContext may not be called concurrently with Write, WriteContext, Close,
// CloseContext or Written.
func (w *WriteStream) CloseContext(ctx context.Context) error {
if w.s.transfers == nil {
return io.ErrClosedPipe
}
w.s.noMore()
for t := range w.s.transfers {
n, err := t.wait(ctx)
w.total += n
t.free()
if err != nil {
w.s.gotError(err)
w.s.flushRemaining()
}
t.free()
}
w.s.transfers = nil
return w.s.err
}
// Written returns the number of bytes successfully written by the stream.
// Written may be called only after Close() or CloseContext()
// has been called and returned.
func (w *WriteStream) Written() int {
return w.total
}
func newStream(tt []transferIntf) *stream {
s := &stream{
transfers: make(chan transferIntf, len(tt)),
}
for _, t := range tt {
s.transfers <- t
}
return s
}