/* Poly2Tri * Copyright (c) 2009-2010, Poly2Tri Contributors * http://code.google.com/p/poly2tri/ * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Poly2Tri nor the names of its contributors may be * used to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Text; namespace Poly2Tri { /* * Extends the PointSet by adding some Constraints on how it will be triangulated
* A constraint defines an edge between two points in the set, these edges can not * be crossed. They will be enforced triangle edges after a triangulation. *

* * * @author Thomas Åhlén, thahlen@gmail.com * @author Lee Wilson, lwilson@ea.com */ public class ConstrainedPointSet : PointSet { protected Dictionary mConstraintMap = new Dictionary(); protected List mHoles = new List(); public override TriangulationMode TriangulationMode { get { return TriangulationMode.Constrained; } } public ConstrainedPointSet(List bounds) : base(bounds) { AddBoundaryConstraints(); } public ConstrainedPointSet(List bounds, List constraints) : base(bounds) { AddBoundaryConstraints(); AddConstraints(constraints); } public ConstrainedPointSet(List bounds, int[] indices) : base(bounds) { AddBoundaryConstraints(); List l = new List(); for (int i = 0; i < indices.Length; i += 2) { TriangulationConstraint tc = new TriangulationConstraint(bounds[i], bounds[i + 1]); l.Add(tc); } AddConstraints(l); } protected void AddBoundaryConstraints() { TriangulationPoint ptLL = null; TriangulationPoint ptLR = null; TriangulationPoint ptUR = null; TriangulationPoint ptUL = null; if (!TryGetPoint(MinX, MinY, out ptLL)) { ptLL = new TriangulationPoint(MinX, MinY); Add(ptLL); } if (!TryGetPoint(MaxX, MinY, out ptLR)) { ptLR = new TriangulationPoint(MaxX, MinY); Add(ptLR); } if (!TryGetPoint(MaxX, MaxY, out ptUR)) { ptUR = new TriangulationPoint(MaxX, MaxY); Add(ptUR); } if (!TryGetPoint(MinX, MaxY, out ptUL)) { ptUL = new TriangulationPoint(MinX, MaxY); Add(ptUL); } TriangulationConstraint tcLLtoLR = new TriangulationConstraint(ptLL, ptLR); AddConstraint(tcLLtoLR); TriangulationConstraint tcLRtoUR = new TriangulationConstraint(ptLR, ptUR); AddConstraint(tcLRtoUR); TriangulationConstraint tcURtoUL = new TriangulationConstraint(ptUR, ptUL); AddConstraint(tcURtoUL); TriangulationConstraint tcULtoLL = new TriangulationConstraint(ptUL, ptLL); AddConstraint(tcULtoLL); } public override void Add(Point2D p) { Add(p as TriangulationPoint, -1, true); } public override void Add(TriangulationPoint p) { Add(p, -1, true); } public override bool AddRange(List points) { bool bOK = true; foreach (TriangulationPoint p in points) { bOK = Add(p, -1, true) && bOK; } return bOK; } // Assumes that points being passed in the list are connected and form a polygon. // Note that some error checking is done for robustness, but for the most part, // we have to rely on the user to feed us "correct" data public bool AddHole(List points, string name) { if (points == null) { return false; } //// split our self-intersection sections into their own lists List pts = new List(); int listIdx = 0; { Contour c = new Contour(this, points, WindingOrderType.Unknown); pts.Add(c); // only constrain the points if we actually HAVE a bounding rect if (mPoints.Count > 1) { // constrain the points to bounding rect int numPoints = pts[listIdx].Count; for (int i = 0; i < numPoints; ++i) { ConstrainPointToBounds(pts[listIdx][i]); } } } while (listIdx < pts.Count) { // simple sanity checking - remove duplicate coincident points before // we check the polygon: fast, simple algorithm that eliminate lots of problems // that only more expensive checks will find pts[listIdx].RemoveDuplicateNeighborPoints(); pts[listIdx].WindingOrder = Point2DList.WindingOrderType.Default; bool bListOK = true; Point2DList.PolygonError err = pts[listIdx].CheckPolygon(); while (bListOK && err != PolygonError.None) { if ((err & PolygonError.NotEnoughVertices) == PolygonError.NotEnoughVertices) { bListOK = false; continue; } if ((err & PolygonError.NotSimple) == PolygonError.NotSimple) { // split the polygons, remove the current list and add the resulting list to the end //List l = TriangulationUtil.SplitSelfIntersectingPolygon(pts[listIdx], pts[listIdx].Epsilon); List l = PolygonUtil.SplitComplexPolygon(pts[listIdx], pts[listIdx].Epsilon); pts.RemoveAt(listIdx); foreach (Point2DList newList in l) { Contour c = new Contour(this); c.AddRange(newList); pts.Add(c); } err = pts[listIdx].CheckPolygon(); continue; } if ((err & PolygonError.Degenerate) == PolygonError.Degenerate) { pts[listIdx].Simplify(this.Epsilon); err = pts[listIdx].CheckPolygon(); continue; //err &= ~(PolygonError.Degenerate); //if (pts[listIdx].Count < 3) //{ // err |= PolygonError.NotEnoughVertices; // bListOK = false; // continue; //} } if ((err & PolygonError.AreaTooSmall) == PolygonError.AreaTooSmall || (err & PolygonError.SidesTooCloseToParallel) == PolygonError.SidesTooCloseToParallel || (err & PolygonError.TooThin) == PolygonError.TooThin || (err & PolygonError.Unknown) == PolygonError.Unknown) { bListOK = false; continue; } // non-convex polygons are ok //if ((err & PolygonError.NotConvex) == PolygonError.NotConvex) //{ //} } if (!bListOK && pts[listIdx].Count != 2) { pts.RemoveAt(listIdx); } else { ++listIdx; } } bool bOK = true; listIdx = 0; while (listIdx < pts.Count) { int numPoints = pts[listIdx].Count; if (numPoints < 2) { // should not be possible by this point... ++listIdx; bOK = false; continue; } else if (numPoints == 2) { uint constraintCode = TriangulationConstraint.CalculateContraintCode(pts[listIdx][0], pts[listIdx][1]); TriangulationConstraint tc = null; if (!mConstraintMap.TryGetValue(constraintCode, out tc)) { tc = new TriangulationConstraint(pts[listIdx][0], pts[listIdx][1]); AddConstraint(tc); } } else { Contour ph = new Contour(this, pts[listIdx], Point2DList.WindingOrderType.Unknown); ph.WindingOrder = Point2DList.WindingOrderType.Default; ph.Name = name + ":" + listIdx.ToString(); mHoles.Add(ph); } ++listIdx; } return bOK; } // this method adds constraints singly and does not assume that they form a contour // If you are trying to add a "series" or edges (or "contour"), use AddHole instead. public bool AddConstraints(List constraints) { if (constraints == null || constraints.Count < 1) { return false; } bool bOK = true; foreach (TriangulationConstraint tc in constraints) { if (ConstrainPointToBounds(tc.P) || ConstrainPointToBounds(tc.Q)) { tc.CalculateContraintCode(); } TriangulationConstraint tcTmp = null; if (!mConstraintMap.TryGetValue(tc.ConstraintCode, out tcTmp)) { tcTmp = tc; bOK = AddConstraint(tcTmp) && bOK; } } return bOK; } public bool AddConstraint(TriangulationConstraint tc) { if (tc == null || tc.P == null || tc.Q == null) { return false; } // If we already have this constraint, then there's nothing to do. Since we already have // a valid constraint in the map with the same ConstraintCode, then we're guaranteed that // the points are also valid (and have the same coordinates as the ones being passed in with // this constrain). Return true to indicate that we successfully "added" the constraint if (mConstraintMap.ContainsKey(tc.ConstraintCode)) { return true; } // Make sure the constraint is not using points that are duplicates of ones already stored // If it is, replace the Constraint Points with the points already stored. TriangulationPoint p; if (TryGetPoint(tc.P.X, tc.P.Y, out p)) { tc.P = p; } else { Add(tc.P); } if (TryGetPoint(tc.Q.X, tc.Q.Y, out p)) { tc.Q = p; } else { Add(tc.Q); } mConstraintMap.Add(tc.ConstraintCode, tc); return true; } public bool TryGetConstraint(uint constraintCode, out TriangulationConstraint tc) { return mConstraintMap.TryGetValue(constraintCode, out tc); } public int GetNumConstraints() { return mConstraintMap.Count; } public Dictionary.Enumerator GetConstraintEnumerator() { return mConstraintMap.GetEnumerator(); } public int GetNumHoles() { int numHoles = 0; foreach (Contour c in mHoles) { numHoles += c.GetNumHoles(false); } return numHoles; } public Contour GetHole(int idx) { if (idx < 0 || idx >= mHoles.Count) { return null; } return mHoles[idx]; } public int GetActualHoles(out List holes) { holes = new List(); foreach (Contour c in mHoles) { c.GetActualHoles(false, ref holes); } return holes.Count; } protected void InitializeHoles() { Contour.InitializeHoles(mHoles, this, this); foreach (Contour c in mHoles) { c.InitializeHoles(this); } } public override bool Initialize() { InitializeHoles(); return base.Initialize(); } public override void Prepare(TriangulationContext tcx) { if (!Initialize()) { return; } base.Prepare(tcx); Dictionary.Enumerator it = mConstraintMap.GetEnumerator(); while (it.MoveNext()) { TriangulationConstraint tc = it.Current.Value; tcx.NewConstraint(tc.P, tc.Q); } } public override void AddTriangle(DelaunayTriangle t) { Triangles.Add(t); } } }